357 research outputs found

    Architecture and dynamics of the jasmonic acid gene regulatory network

    Get PDF
    Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. To advance our understanding of the architecture and dynamic regulation of the JA gene regulatory network, we performed a high-resolution RNA-seq time series of methyl JA-treated Arabidopsis thaliana at 15 time points over a 16-h period. Computational analysis showed that methyl JA (MeJA) induces a burst of transcriptional activity, generating diverse expression patterns over time that partition into distinct sectors of the JA response targeting specific biological processes. The presence of transcription factor (TF) DNA binding motifs correlated with specific TF activity during temporal MeJA-induced transcriptional reprogramming. Insight into the underlying dynamic transcriptional regulation mechanisms was captured in a chronological model of the JA gene regulatory network. Several TFs, including MYB59 and bHLH27, were uncovered as early network components with a role in pathogen and insect resistance. Analysis of subnetworks surrounding the TFs ORA47, RAP2.6L, MYB59, and ANAC055, using transcriptome profiling of overexpressors and mutants, provided insights into their regulatory role in defined modules of the JA network. Collectively, our work illuminates the complexity of the JA gene regulatory network, pinpoints and validates previously unknown regulators, and provides a valuable resource for functional studies on JA signaling components in plant defense and development

    Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation

    Get PDF
    Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector

    Communication about genetic testing with breast and ovarian cancer patients: a scoping review

    Get PDF
    © 2018, The Author(s). Genetic testing of patients with cancer is increasingly offered to guide management, resulting in a growing need for oncology health professionals to communicate genetics information and facilitate informed decision-making in a short time frame. This scoping review aimed to map and synthesise what is known about health professionals’ communication about genetic testing for hereditary breast and ovarian cancer with cancer patients. Four databases were systematically searched using a recognised scoping review method. Areas and types of research were mapped and a narrative synthesis of the findings was undertaken. Twenty-nine papers from 25 studies were included. Studies were identified about (i) information needs, (ii) process and content of genetic counselling, (iii) cognitive and emotional impact, including risk perception and recall, understanding and interpretation of genetic test results, and anxiety and distress, (iv) patients’ experiences, (v) communication shortly after diagnosis and (vi) alternatives to face-to-face genetic counselling. Patients’ need for cancer-focused, personalised information is not always met by genetic counselling. Genetic counselling tends to focus on biomedical information at the expense of psychological support. For most patients, knowledge is increased and anxiety is not raised by pre-test communication. However, some patients experience anxiety and distress when results are disclosed, particularly those tested shortly after diagnosis who are unprepared or unsupported. For many patients, pre-test communication by methods other than face-to-face genetic counselling is acceptable. Research is needed to identify patients who may benefit from genetic counselling and support and to investigate communication about hereditary breast and ovarian cancer by oncology health professionals

    Pyrethrins Protect Pyrethrum Leaves Against Attack by Western Flower Thrips, Frankliniella occidentalis

    Get PDF
    Pyrethrins are active ingredients extracted from pyrethrum flowers (Tanacetum cinerariifolium), and are the most widely used botanical insecticide. However, several thrips species are commonly found on pyrethrum flowers in the field, and are the dominant insects found inside the flowers. Up to 80 % of western flower thrips (WFT, Frankliniella occidentalis) adults died within 3 days of initiating feeding on leaves of pyrethrum, leading us to evaluate the role of pyrethrins in the defense of pyrethrum leaves against WFT. The effects of pyrethrins on WFT survival, feeding behavior, and reproduction were measured both in vitro and in planta (infiltrated leaves). The lethal concentration value (LC50) for pyrethrins against WFT adults was 12.9 mg/ml, and pyrethrins at 0.1 % (w/v) and 1 % (w/v) had significantly negative effects on feeding, embryo development, and oviposition. About 20-70 % of WFT were killed within 2 days when they were fed chrysanthemum leaves containing 0.01-1 % pyrethrins. Chrysanthemum leaves containing 0.1 % or 1 % pyrethrins were significantly deterrent to WFT. In a no-choice assay, the reproduction of WFT was reduced significantly when the insects were fed leaves containing 0.1 % pyrethrins, and no eggs were found in leaves containing 1 % pyrethrins. Our results suggest that the natural concentrations of pyrethrins in the leaves may be responsible for the observed high mortality of WFT on pyrethrum

    Modulation of ethylene- and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate

    Get PDF
    Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced hyponastic growth. The hyponastic growth response induced by high temperature (heat) treatment and upon application of the gaseous hormone ethylene is highly similar to the response induced by low light. To test if these environmental signals induce hyponastic growth via parallel pathways or converge downstream, we studied here the roles of Methyl-JA (MeJA) and SA on ethylene- and heat-induced hyponastic growth. For this, we used a time-lapse camera setup. Our study includes pharmacological application of MeJA and SA and biological infestation using the JA-inducing caterpillar Pieris rapae as well as mutants lacking JA or SA signalling components. The data demonstrate that MeJA is a positive, and SA, a negative regulator of ethylene-induced hyponastic growth and that both hormones repress the response to heat. Taking previous studies into account, we conclude that SA is the first among many tested components which is repressing hyponastic growth under all tested inductive environmental stimuli. However, since MeJA is a positive regulator of ethylene-induced hyponastic growth and is inhibiting low light- and heat-induced leaf movement, we conclude that defence hormones control hyponastic growth by affecting stimulus-specific signalling pathways

    An apoplastic peptide signal activates salicylic acid signalling in maize

    Get PDF
    Control of plant pathogen resistance or susceptibility largely depends on the promotion of either cell survival or cell death. In this context, papain-like cysteine proteases (PLCPs) regulate plant defence to drive cell death and protection against biotrophic pathogens. In maize (Zea mays), PLCPs are crucial in the orchestration of salicylic acid (SA)-dependent defence signalling. Despite this central role in immunity, it remains unknown how PLCPs are activated, and which downstream signals they induce to trigger plant immunity. Here, we present the discovery of an immune signalling peptide, Zea mays immune signalling peptide 1 (Zip1). A mass spectrometry approach identified the Zip1 peptide being produced after salicylic acid (SA) treatment. In vitro studies using recombinant proteins demonstrate that PLCPs are required to release bioactive Zip1 from its propeptide precursor (PROZIP1). Strikingly, Zip1 treatment strongly elicits SA accumulation in maize leaves. Moreover, RNAseq based transcriptome analyses revealed that Zip1 and SA treatments induce highly overlapping transcriptional changes. Consequently, Zip1 promotes the infection of the necrotrophic pathogen Botrytis cinerea in maize, while it reduces virulence of the biotrophic fungus Ustilago maydis. Together, Zip1 represents the previously missing signal that is released by PLCPs to activate SA defence signalling

    Purification and Characterization of a Novel Hypersensitive Response-Inducing Elicitor from Magnaporthe oryzae that Triggers Defense Response in Rice

    Get PDF
    <div><h3>Background</h3><p><em>Magnaporthe oryzae</em>, the rice blast fungus, might secrete certain proteins related to plant-fungal pathogen interactions.</p> <h3>Methodology/Principal Findings</h3><p>In this study, we report the purification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip1) secreted by <em>M. oryzae</em>. The protein fraction was purified and identified by de novo sequencing, and the sequence matched the genomic sequence of a putative protein from <em>M. oryzae</em> strain 70-15 (GenBank accession No. XP_366602.1). The elicitor-encoding gene <em>mohrip1</em> was isolated; it consisted of a 429 bp cDNA, which encodes a polypeptide of 142 amino acids with a molecular weight of 14.322 kDa and a pI of 4.53. The deduced protein, MoHrip1, was expressed in <em>E. coli</em>. And the expression protein collected from bacterium also forms necrotic lesions in tobacco. MoHrip1 could induce the early events of the defense response, including hydrogen peroxide production, callose deposition, and alkalization of the extracellular medium, in tobacco. Moreover, MoHrip1-treated rice seedlings possessed significantly enhanced systemic resistance to <em>M. oryzae</em> compared to the control seedlings. The real-time PCR results indicated that the expression of some pathogenesis-related genes and genes involved in signal transduction could also be induced by MoHrip1.</p> <h3>Conclusion/Significance</h3><p>The results demonstrate that MoHrip1 triggers defense responses in rice and could be used for controlling rice blast disease.</p> </div

    The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induces systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea

    Get PDF
    Background and aim Saccharothrix algeriensis NRRL B-24137, isolated from a Saharan soil, has been described as a potential biocontrol agent against Botrytis cinerea and other phytopathogens. However, the plant protection mechanisms involved still need to be described. The aim of this study was to determine this protection phenomenon as well as parts of the mechanisms involved, using Arabidopsis thaliana seedlings and B. cinerea. Methods The bacterial colonization process was evaluated on A. thaliana seedlings using fluorescence in situ hybridization. Protection of A. thaliana seedlings inoculated with NRRL B-24137 against B. cinerea was then evaluated. Parts of the mechanisms involved in the systemic protection against B. cinerea were evaluated using known mutants of genes involved in jasmonate (JA)/ethylene (ET)/salicylic acid (SA) signaling. Other Arabidopsis mutants, AtrhbohD-3, AtrhbohF-3, and ups1-1 were also screened to determine other parts of the mechanisms involved. Results The results showed that the strain NRRL B-24137 colonized, epi- and endophytically, the roots of Arabidopsis seedlings but the strain was not a systemic colonizer during the time of the experiment. The strain NRRL B-24137 also reduced B. cinerea symptoms and the protection was linked to known mechanisms of induced systemic resistance (ISR; JA/ET signaling), as well as to functionality of AtrbohF oxidase and of UPS1. Crosstalk between ET/JA and SA signaling could also be involved. Conclusions The isolate NRRL B-24137, after colonizing the root systems of A. thaliana, induces an ISR against B. cinerea, which is JA/ET dependent, but could also require SA crosstalk and protection could also require NAPDH oxidases and UPS1 functionalities

    The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations

    Get PDF
    It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD) simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations, normal mode analysis, and hydrogen bond energy (HBE) calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic analogues in view of energy. In addition, a more detailed model for auxin and Aux/IAA perception was also proposed, indicating that Phe82 and Phe351 played a pivotal role in Aux/IAA perception. Upon auxin binding, Phe82 underwent conformational changes to accommodate the subsequent binding of Aux/IAA. As a result, auxin enhances the TIR1-Aux/IAA interactions by acting as a “molecular glue”. Besides, Phe351 acts as a “fastener” to further improve the substrate binding. The structural and mechanistic insights obtained from the present study will provide valuable clues for the future design of promising auxin analogues
    corecore